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Valuing Risk Management Tools as Complex Derivatives:

An Application to Revenue Insurance

Revenue insurance schemes provide protection against declines in production, prices, or both.

Their indemnity payment structure resembles options with complex contingencies -- exotic

options. Crop Revenue Coverage (CRC) is a privately sold, but government subsidized, insurance

product that protects farmers against adverse movements in prices and yield. We show that CRC's

indemnity payments involve the exchange of a known quantity of European Collar Options for

a random quantity of similar options: an Asian option with stochastic strike price. We use Monte

Carlo Simulation to value this exchange of options. Our results provide a new framework for

measuring mispricing in this important insurance market.
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Valuing Risk Management Tools as Complex Derivatives:

An Application to Revenue Insurance

 Introduction

Revenue insurance products are integral tools for risk management, providing protection

against declines in output, prices, or both. Typically, the indemnity payment from Revenue

insurance is the difference between an insured revenue level, acting as a strike price, and

realized revenues when the policy matures.

In its simplest form, the indemnity payment for revenue insurance resembles that of a

simple European option, where the insured revenue level (strike) is predetermined and the

realized revenue is the product of two stochastic state variables, output and price. Despite this

complication, such options can be valued in a straight forward manner using standard option

pricing techniques (Wilmott, Dewynne & Howison 1993).

In more complicated forms, the indemnity payment for revenue insurance may resemble

the payoff pattern of a complex derivative security. For example, the insured revenue level

may be stochastic and realized revenue may be a complicated function of several stochastic

state variables, including output and price.

In this paper, we consider revenue insurance of the latter variety. In particular, we value

Crop Revenue Coverage (CRC) insurance, where the insured revenue level (strike) is

stochastic and realized revenue is based on the average of the output price (Asian feature).

CRC is a privately sold, but government subsidized, insurance product that protects farmers

against adverse movements in prices and yield.

We show that CRC's indemnity payments involve the exchange of a known quantity of

European Collar Options for a random quantity of similar options, making the strike price

stochastic. Because traded futures contracts exits for both yield and prices, we use standard

option pricing techniques along with Monte Carlo Simulation to value this exchange of

options.
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Crop Revenue Insurance

Farming is an inherently risky enterprise and yield and price volatility represent the most

significant forms of uncertainty in agriculture. Such risks have provided justification for

government involvement in agriculture since the depression era, despite the existence of a

variety of market based hedging instruments. Managing farm incomes, stabilizing supplies and

prices, and food security considerations have provided the rationale for continued government

involvement in agriculture. However, because of recent shifts in policy, government's role in

directly mitigating risk in agriculture has diminished. Instead, government plays an indirect

role by subsidizing crop revenue insurance plans, which are widely sold to farmers across the

nation.1

The Federal Crop Insurance Corporation (FCIC), a wholly owned government

corporation administers these revenue insurance programs and provide support by subsidizing

the premiums paid by farmers, paying part of sales and claims processing costs, and

re-insuring underwriting losses that may be suffered by private insurance companies. The

majority of supported insurance plans insure revenues at prevailing prices at the time of

planting. However, the CRC insures revenues at the larger of the planting or the harvest

price.2

We show that purchasing this complex option essentially provides the same benefits as

purchasing a standard revenue insurance plan and maintaining a price hedge in the commodity

markets. Given this favorable feature of the CRC, it is not surprising that CRC has claimed a

significant portion of the market and is projected to become the dominant form of revenue

insurance.3

Much controversy surrounds the provisions of CRC. These concern the distributional

effects of administering and monitoring the new policies and the incentive incompatibility

problems that arise from government's re-insurance and subsidization of private insurance

companies (Greenberg, January 11, 1998). Developing a theoretically consistent model for

determining the CRC premiums is of paramount importance for resolving existing

controversies and ensuring the financial soundness of the program over time.

As a recent GAO (1998) study suggests, the current procedures for determining CRC
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premiums are ad hoc, complex, and too closely tied to other insurance programs. Moreover,

“the CRC plan does not base its rate structure upon the interrelationship between crop prices

and farm-level-yields - an essential component of actuarially sound rate setting.” That is,

current methods ignore the correlation structure of yield and prices. The GAO report

concludes that current CRC premiums may not adequately protect the government from

financial losses due to re-insurance

The purpose of this paper is to show that the CRC indemnity pay-outs are identical to that

of a complex derivative security - a path dependent option whose payoff is a function of at

least two stochastic processes. Our model provides a benchmark for measuring mispricing of

the CRC insurance. Mispricing has significant consequences in terms of increased costs to the

government. Because of the existence of re-insurance through FCIC, systematic under-pricing

of CRC may necessitate a large government bail-out of the crop insurance industry. Similarly,

over-pricing may exclude many farmers from participation in the program and may lead to

increased regulation of the crop insurance industry. In either case, the cost to the government

will rise, and contrary to the government's stated objective, its role in agricultural markets will

expand.

The CRC as an Exotic Option

Under standard revenue insurance plans, the farmer's revenue guarantee is established by

multiplying the prevailing prices at the time of planting by the farmer’s historical average yield

per acre. Farmers receive indemnity payments only if their actual revenue at harvest falls

below the guaranteed revenue. If a price increase is offset by a fall in production, or vice

versa, no payment is made. CRC differs from these plans in that the revenue guarantee is

recalculated at harvest time, and the indemnity payment is based on the higher of the prices at

harvest or planting time.

In this section we provide a mathematical representation of the CRC's indemnity payment

and show that CRC's complicated payment structure is a path dependent option whose payoff

is a function of at least two underlying stochastic processes. We use Monte Carlo simulation



FG(ph) ' max[ MG(pb), HG(ph) ] ' c Y ( max[ pb, ph ]
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to numerically value the CRC premium, because we know of no closed form pricing formula.

To keep the paper focused, we limit our numerical analysis to corn, though the proposed

framework is applicable to all crops covered under CRC.

Let t denote both the CRC purchase date and the time that planting decisions are made.

Let T be the harvest time, when the indemnity payment is made. At t farmers select their Yield

Coverage Level, c 0 [.50, ... ,.75], in 5% increments, and their Price Percentage Coverage, "

= 0.95 or 1.00. These parameters allow the farmer to select her desired level of exposure to

yield and price risk.

Denote the farm's Actual Production History (APH) by Y*, and the sequence of past daily

(settlement) futures prices for a contract with delivery date T by F(t - n,T), ... , F (t,T).  Note4

that both these variables are known to the farmer and the insurance company at t.

Fix the start of corn production year, t, at March 15, and let T be December 1 of the same

crop year. At t the Minimum Guarantee (MG) is calculated as MG(p ) = c Y* p , where c isb     b

the yield coverage level, Y* is the Actual Production History, and p  is the “base price,”b

defined as the product of the price percentage (") and the average of February Chicago Board

of Trade (CBOT) corn futures prices for delivery at T.5

Similarly, at T, the Harvest Guarantee, HG, is calculated as HG(p ) = c Y* p , where c andh     h

Y* are as above and p  is the Harvest Price, which is defined as the average of Novemberh

CBOT corn futures prices for delivery at T multiplied by price percentage (").

The Final Guarantee, FG, is determined by combining the expressions for MG and HG and

accounting for the program’s price limit, L, placed on p :h
6

where p  0 [ p  ± L]. We explicitly incorporate the price limits on p , into the definition of FGh   b          h

using “cap” and “floor” options (Hull 1997). Let C(x , k) = max(0, x - k ) denote the terminal

payoff to a European call option on an underlying process x with strike price k, then FG is:



FG(ph) ' c Y ( max[ pb, ph ]

' c Y ( [ pb % max[ 0, ph & pb ] & max[0, ph & (pb % L) ] ]

' c Y ( [ pb % C(ph, pb) & C(ph, pb % L) ]

R(ph, YT) ' YT [ pb % C(ph, pb & L) & C(ph, pb % L) ]

I(ph, YT) ' max[ 0, FG(ph) & R(ph, YT) ]

7

(1)

The calls in equation (1) are path dependent (i.e., Asian) options, whose underlying is the

arithmetic average of November futures prices for delivery date T.  The term in square7

brackets in equation (1) is a European “Collar Option,” written on p , with floor p  and ceilingh    b

(p  + L). Furthermore, the product of coverage level, c, and the farm's average historical yield,b

Y*, determines the number of Collar Options that the insurance policy grants to the farmer.

Denote the farm's actual yield at T by Y The farmer's Calculated Revenue is defined as RT.  
8

= Y  p , where the price is again limited to p  0 [ p  ± L]. Incorporating the price limit into theT h         h   b

definition of Calculated Revenues leads to:

(2)

where again the term in square bracket is a European Collar option, written on p , with floorh

(p  - L) and ceiling (p  + L). Because Y  is not observed until harvest, the number of Collarb     b    T

options in (2) is a random variable at the time the policy is written.

If the farm's Calculated Revenue (2) falls below the Final Guarantee (1), CRC makes up

the difference by paying an Indemnity Payment, I, to the farmer. Otherwise no payment is

made. The Indemnity Payment is:

(3)

The formulation in (3) shows that the CRC indemnity payment is identical to that of an option

whose terminal payoff is the difference between two European Collar Options. Figure (1)
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depicts the terminal payoff to these collars when c = .75, Y* = 126 bushels/acre, p  = $2.60b

per bushel, and corn's price limit is L = $1.50 per bushel. Given these parameters, the realized

value of Y  (set equal to 100 in the figure) determines the position of the revenue curve andT

the level of indemnity payment.

One method for valuing the complex CRC option in (3) is to solve, using a set of

boundary conditions, the multivariate Partial Differential Equation (PDE) that describes the

evolution of I as a function of p , Y , and T - t. Such PDE is difficult to solve analytically,h  T

because of its complicated boundary conditions, the path dependent nature of p , and theh

existence of cross-partial terms involving harvest price, farmer's yield, and time.9

Absent an analytical solution, the PDE describing the value of CRC insurance may be

solved using a variety of computationally intensive numerical schemes (Wilmott, et. al. 1993).

One such scheme is Monte Carlo simulation, a method that is widely used in academia and

industry to solve similar problems (Boyle 1977).10

Corn Futures Price and Yield Processes

The current procedure for setting CRC premiums ignores the impact that yields may have on

crop futures prices (GAO). Addressing this concern, we model the correlation structure

between yield and futures prices using a joint log-normal distribution. The empirical literature

suggests that the log-normal distribution is a reasonable model for both yields and futures

prices (Tirupattur, Hauser & Chaherli 1996). 

We calculate the CRC premiums for two types of insured units. The first is a

representative individual farm with yield distribution identical to the aggregate yield at the

national level. The second is an individual farm, where the yield distribution may be different

and only partially correlated with aggregate yield. In this case, three state variables - the

futures price, aggregate yield, and the individual farm's yield - determine the value of CRC

contract. We assume the state variables follow a tri-variate log-normal process (Tirupattur, et.

al. 1996). Specifically, the futures price ( F(· )) and aggregate yield (Y) follow the correlated

geometric Brownian motions:



dF/F ' µF dt % FF dW
dY/Y ' µY dt % FY dZ

dYi/Yi ' µYi
dt % FYi

dX

V ' e &rT E ([ I(ph, YT) ]

9

(4)

where µ , µ  and F , F  are the drift and volatility terms of corn futures prices and aggregateF  Y  F  Y

yield, and dW, dZ are correlated Brownian motions with correlation coefficient F  dt =FY

E[dW, dZ].  We further assume that the individual farm's yield, Y , is correlated with11
i

aggregate yield and follows a geometric Brownian motion:

(5)

where µ  and F  are the drift and volatility terms of the individual farm's yield and dX isYi  Yi

correlated with dZ: F  dt = E[dZ, dX].YYi

Valuing CRC by Monte Carlo Simulation

In a risk neutral environment, the value of the CRC indemnity payment is the discounted

value of its expected terminal date cash flow. The expectation is under the risk neutral

measure, and discounting occurs at the non-stochastic risk free rate r (Hull 1977, Wilmott, et.

al. 1993). Then the value of the indemnity payment, V, is

(6)

where E* is the expectation operator under the risk-neutral measure.

Monte Carlo simulation approximates the expectation with a simple arithmetic average of

the indemnity payments taken over a finite number of simulated price paths n = 1, 2, ..., N

(Boyle 1977). The calculated value of the CRC indemnity premium is



V . e &rT [ 1
N jN

n'1 I (p n
h , Y n

T ) ]

dF/F ' µF dt % FF dW

dY/Y ' µY dt % FY (DFY dW1 % 1&D2
FY dW2)
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(7)

where p  and Y , n = 1, ..., N, are obtained from simulations that use the risk neutralh   T
n  n

probability measure as the underlying distribution.

For large values of N, equation (7) provides a good approximation of the true value of

the premium. Indeed, the rate of convergence is F//N, where F is the standard deviation of

the terminal date Indemnity payment. In general, the rate of convergence is slow. For example

to reduce the rate by a factor of 2, N would have to increase by a factor of 4, implying high

accuracy will require lengthy computation time. Alternatively, reducing F by half would

achieve the same result without the need for additional sampling. Several techniques exists to

reduce F, such as antithetic, control variate, stratified sampling, or importance sampling. We

implement the antithetic technique, the simplest of the four (Boyle 1977, Bratley, Fox &

Schrage 1987).12

Simulation of the State Variables

For the purpose of simulating the terminal value of the state variables, the risk neutral

diffusion processes for yield (aggregate and individual) and futures prices can be restated in

terms of uncorrelated Brownian motions using Cholesky decomposition:13

(8)

where dW  and dW  are uncorrelated Brownian motions. Using Cholesky decomposition1  2

again, we can write the individual farm's yield process as:



dYi/Yi ' µYi
dt % FYi

( DYiY
DFY dW1 % DYiY

1&D2
FY dW2 % 1&D2

YiY
dW3 )

FTo%k ' FTo%k&1 exp[ &0.5F2
F )tk % FF )tk ,1,k ]

FTo
' Ft exp[ &0.5F2

F (To&t) % FF To&t ,1,0 ]
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(9)

where dW  , i =1, 2, 3 are uncorrelated Brownian motions. For the representative nationali

farm D  = 1 and for individual farm D  … 1. When µ  µ , F  = F ,, and D  = 1, equationsYiY       YiY    Yi  Y  Yi  Y   YiYi

(8) and (9) are identical and there are only two state variables. In setting the CRC premiums,

the stochastic process assumed by FCIC sets D  = 0 and D  = 1. The consequence of theseFY    YiY

assumptions is quantified when we present our results.

Following Black (1976), Marcus & Modest (1984), and Marcus & Modest (1986), we

model the futures price as a martingale with zero drift (µ  = 0).  Additionally, because of theF
14

30 day averaging, only the last month of the yield and futures price need to be simulated.

Letting T  = T - 30 be the 30  day before expiration of the futures contract and )t  = 1 for k =0                k
th

1, ..., 29, the futures sample path follows recursively:

(10)

where

(11)

and , , k = 0, ..., 29, are distributed N (0,1).0,k

Following Marcus & Modest (1984), the production setting is taken to be point

input-point output, where the crop is planted at t and harvested at T without interim

production decisions. Therefore, the growth rate of yield, though positive over many years, is

zero for any given crop year (µ  = µ  = 0). Once planting has occurred, actual yield is theYi  Y

realization from a fixed distribution, ruling out any supply response to short run changes in



YTo%k ' YTo%k&1 exp[ &0.5F2
Y )tk % FY )tk (DFY ,1,k % 1&D2

FY ,2,k) ]

YTo
' Yt exp[ &0.5F2

Y (T0&t) % FY T0&t (DFY ,1,0 % 1&D2
FY ,2,0) ]

Yi,To%k ' Yi,To%k&1 exp[ &0.5F2
Y )tk

% FY )tk (DYiY
DFY ,1,k % DYiY

1&D2
FY ,2,k % 1&D2

YiY
,3,k ]

Yi,To
' Yi,t exp[ &0.5F2

Y (T0&t)

% FY T0&t (DYiY
DFY ,1,0 % DYiY

1&D2
FY ,2,0 % 1&D2

YiY
,3,0) ]
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market conditions.

For simplification we also assume that F  = F . This is a reasonable assumption forYi  Y

regions with homogeneous agronomic conditions (like the corn belt), where yields flow from

the same exogenous factors such as weather. Under these assumptions, the date T  + k yields0

are:

(12)

Similarly, for the individual farm’s yield,

(13)

where , 's, j = 1, 2, 3, k = 0, .., 29, are iid N(0, 1). For a given set of parameters, equationsj,k

(10 - 13) are used to generate n = 1, ..., 20,000 simulations for futures price and yield at T.

These values are then used in equation (7) to calculate the CRC premium.

Results

The choice of model parameters is a critical decision for the calculation of CRC premium in
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(7). For this reason, we use a range of values for the key parameters, specifically the volatility

and correlation of the state variables. The selected range of values include estimates we

obtained from actual data and those reported in the literature (Marcus & Modest 1984,

Tirupattur, et. al. 1996).

The CRC premium is linearly increasing in yield and price coverage percentage. To obtain

an upper bound on the premiums, we set these parameters at their maximum allowable values:

c = 0.75 and " = 1.00. For the 1997 crop year, U.S. Department of Agriculture (USDA) data

indicates that the aggregate corn yield was 126 bushels per acre (Y* = 126), and we set the

base price at $2.60 per bushel (p  = $2.60). For each run of the simulation, we set the initialb

futures price equal to the base price (p  = F(t,T)), but allow the initial yield to differ from theb

Actual Production History (Y(t) … Y*). The 1997 Treasury Bill rate, as reported by the Federal

Reserve Bank, is used for the risk free rate (r = 5.47%). Our estimates of the CRC premium

are based on 20,000 Monte Carlo simulations and various combination of parameters.

Table (1) presents the premiums for an “average farm:” D  = 1, F  = 0.04 and Y* = 126.YiY   Y
15

Note that since yield evolves according to a geometric Brownian motion with zero drift, Y(t)

is the expected yield at harvest, E[Y(T)] = Y (t). As Table (1) shows, for a given D  and Y(t),FY

premiums rise with the volatility of futures price, F . The table also shows that premiums areF

significantly higher when expected yield falls short of the average historical yield or vice versa.

This follows by noting that the indemnity payoff is max(0, FG - R), where FG and R are

proportional to the average historical (Y*) and realized (Y(T)) yields, respectively. When Y(T)

drops below Y* (deep in-the-money), FG - R increases, implying higher premiums. The

opposite occurs when Y(T) climbs above Y* (deep out-of-the-money). Moreover, a rise in the

volatility of futures price, F , leads to relatively larger increases in premiums, when expectedF

yield exceeds the average historical yield. Figure (2) provides a three dimensional plot of the

CRC premium for the “average farm.”16

Perhaps the most interesting result reported in Table (1) relates to the influence of the

correlation of yield and futures price on premiums. Our results show that D  has a significantFY

impact on the estimated premiums. Figure (3) provides a graph of premium versus D  for theFY

hypothetical average farm. It is clearly seen that the CRC premium is a decreasing function of

D . The figure also indicates that thirty day averaging of the futures price diminishes the effectFY
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of correlation on premiums.

Table (2) shows a very interesting relation between premiums and the yield volatility (F )Y

for the hypothetical average farm. Columns one, two and three represent a farm with expected

output below, equal to and exceeding the farm's historical average. In all three cases, the

relation between premium and yield volatility is "U" shaped. From Figure (2) and noting that

the initial futures price was set equal to the base price of $2.60 per bushel, the three cases

illustrate the impact of volatility on the premium when the option is “out of the money” (from

the perspective of the policy holder). Although not included in table (2), the relationship

becomes linear and increasing when the option is “in the money” (yield levels less than 100

bushels per acre).

Table (3) presents estimates of CRC premiums for an individual farm with output

correlation of yields, D  = 0.5. Patterns similar to those of Table (1) are repeated: theYiY

premium rises with F , falls with D , and increases when expected yield (Y  (t)) is less than theF    FY       i

farm's average historical yield (Y*). Comparison across Tables (1) and (3) shows that the

premium falls as D  rises. Figure (4) depicts the relationship between the premium and D .YiY           YiY

Again, it is apparent that thirty days averaging of the futures price reduces the influence of DYiY

on the estimated premiums.

Table (4) provides data on the actual CRC premiums for corn for 1997 crop year.  These17

data show that premiums vary widely across each state and the country as a whole. Average

premiums are closely lumped in states in the corn belt and generally rise with distance away

from the corn belt. Unfortunately the level of yield and price coverage associated with these

data are unknown, though they will surely fall below our assumed values of c = 75% and " =

100%. It would be interesting to back out the parameters of our model from a more complete

set of data.This is an area for further research.  Nevertheless the existing data can be18

compared to our estimates, since ours represent an upper bound for the CRC premiums. 

Comparison of the values in Table (4) with our estimates in Table (1) show that, for

reasonable levels of price and yield risk, actual premiums far exceed our estimated premiums.

Actual premiums approach our estimates only under conditions of grave uncertainty: high
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futures price volatility (F  > 30%), zero yield-price correlation (D  = 0), and low expectedF      FY

yield relative to the farm's historical average.

Several factors can explain the gap between our estimates and the actual premiums in

Table (4). First, our volatility and correlation parameters may significantly underestimate the

true value of these parameters. Though an upward adjustment of these parameters would

narrow this gap, the empirical literature supports our choice of parameter values. In fact, the

GAO report (1998) (page 35) shows that farm's insured under CRC have a lower average FYi

than non-insured farms.

In similar vein, actual premiums may reflect a “jump” component, accounting for the

probability of “large” shocks to the futures price or the yield processes (a catastrophe).

Catastrophe premiums, however, should be zero since government re-insures the CRC

insurance providers for the excess of claims payment over the collected premiums. Moreover,

the price limit L also protects the insurance companies from “large” price movements. In any

case, the majority of farmers hold separate, government subsidized, catastrophe insurance.

The CRC insurance policy offers farmers a number of additional flexibilities - options. In

practice, farmers are allowed to re-plant (or plant late) their insured acreage, collect part of

their indemnity before harvest guarantee is known, separate their farm into irrigated or

non-irrigated practices with different premium rates, and spread their premium payment over a

number of months. These provisions provide valuable options that are not priced by our

model.

The FCIC reimburses the insurance companies for a large fraction of their administrative

costs (GAO). It is possible that part of the remaining administrative costs are passed along in

the form of higher premiums, which may also explain the estimated gap in premiums. Along

this same lines, actual premiums may contain a component that protects the providers for

moral hazard problems that arise from insuring yield, which may require significant amount of

care from the farmer.19

Finally, in a perfectly functioning and complete financial market with no transaction costs,

taxes or other frictions, farmers can replicate the CRC coverage by hedging in the derivatives

and commodity markets. This is essentially the setting assumed in our model. Though the real
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world is far from this abstraction, our model still provides a theoretically consistent

benchmark to measure the costs associated with such market imperfections.

Conclusions

This paper considers the pricing of crop revenue coverage insurance as an exotic option. We

use a preference-free valuation approach and Monte Carlo simulation to value CRC insurance

under a wide range of parameter values. Our model is very general, accounting for important

factors that have been overlooked in the extant literature, particularly the correlation structure

of yields and prices.

Data shows that actual CRC premiums far exceed those suggested by our model. We

identify a number of explanations for the divergence between actual premiums and our model

values. Further investigation of these factors is likely to be an exciting area for future research.
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Table 1: Estimated Premiums for a Representative Farm ($/Acre)

Expected Yield
Future Volatility Correlation Correlation Correlation

FF DD  = -1.0 DD  = -0.5 DD  = 0F FY FY FY

Y(t) = 100 .20 7.87 9.31 10.60
.25 11.78 13.16 14.35
.30 15.73 17.13 18.32
.35 19.84 20.82 22.13
.40 23.74 25.16 25.77
.45 27.61 28.62 29.66
.50 31.44 32.34 32.87
.55 35.24 36.07 36.80
.60 38.57 39.63 40.43

Y(t) = 126 .20 0.21 0.48 0.85
.25 1.10 1.68 2.21
.30 2.71 3.56 4.28
.35 4.88 5.83 6.98
.40 7.68 8.66 9.78
.45 10.30 11.59 12.66
.50 13.73 14.93 15.87
.55 16.61 18.05 18.64
.60 19.66 20.79 21.63

Y(t) = 140 .20 0.02 0.08 0.17
.25 0.25 0.45 0.75
.30 0.91 1.39 1.87
.35 2.16 2.79 3.46
.40 3.79 4.85 5.42
.45 6.17 6.86 7.94
.50 8.50 9.32 10.56
.55 10.84 12.07 12.76
.60 13.48 14.27 15.57

Simulation results (n = 20,000) with D  = 1, c = 75%, " = 100%, F  = 4%,YiY         Y

F(t) = p  = $2.60, Y* = 126 bushels/acre, and r = 5.47%.b
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Table 2: Indemnity Premium versus FF  for a Representative Farm ($/Acre)y

Yield Volatility (%) Expected Yield Expected Yield Expected Yield
FF Y(t) = 100 Y(t) = 126 Y(t) = 140Y

2 13.41 1.82 0.54

4 13.02 1.67 0.50

6 13.69 1.48 0.42

8 14.28 1.43 0.37

10 15.36 1.32 0.33

12 16.38 1.39 0.34

14 17.63 1.52 0.33

16 19.07 1.87 0.44

18 20.36 2.38 0.53

20 21.93 3.00 0.84

Simulation results (n = 20,000) with D  = 1, c = 75%, " = 100%, F  = 25%, D  = -0.5,YiY         F   FY

F(t) = p  = $2.60, Y* = 126 bushels/acre, and r = 5.47%.b



20

Table 3: Estimated Premiums for an Individual Farm ($/Acre)

Expected Yield
Future Volatility Correlation Correlation Correlation

FF DD  = -1.0 DD  = -0.5 DD  = 0F FY FY FY

Y (t) = 100i .20 9.31 9.98 10.59
.25 13.11 13.77 14.39
.30 17.13 17.65 18.19
.35 20.91 21.20 22.08
.40 25.08 25.68 25.77
.45 28.60 29.67 29.64
.50 32.12 32.77 33.37
.55 36.31 36.46 36.68
.60 39.24 39.91 40.20

Y (t) = 126i .20 0.50 0.68 0.88
.25 1.61 2.00 2.29
.30 3.53 3.99 4.31
.35 5.83 6.39 6.84
.40 8.66 9.23 9.76
.45 11.79 12.21 12.71
.50 14.84 15.30 16.05
.55 17.73 18.39 18.82
.60 20.81 21.44 21.79

Y (t) = 140i .20 0.07 0.11 0.17
.25 0.47 0.57 0.71
.30 1.33 1.52 1.85
.35 2.84 3.13 3.47
.40 4.68 4.98 5.60
.45 6.95 7.48 7.86
.50 9.47 9.96 10.27
.55 11.97 12.41 13.03
.60 14.27 15.05 15.37

Simulation results (n = 20,000) with D  = 0.5, c = 75%, " = 100%, F  = 4%,YiY         Y

F(t) = p  = $2.60, Y(t) = Y* = 126 bushels/acre, and r = 5.47%.b
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Table 4: Statistics on the Actual CRC Premiums for Corn (1997)

State Premium/Acre (V) FF  (%) Min (V) Max (V) Total AcresV

Colorado 16.82 2.36 13.35 20.58 221,757
Illinois 15.92 3.79 11.37 39.80 727,091
Indiana 15.96 3.82 9.89 30.52 395,170
Iowa 14.72 2.44 10.70 21.48 3,056,544
Kansas 14.78 2.99 9.76 27.17 428,973
Michigan 22.10 5.81 14.26 35.39 91,411
Minnesota 19.01 5.42 13.12 35.85 769,781
Missouri 22.64 4.85 15.66 42.57 193,347
Nebraska 14.24 3.54 9.54 30.42 2,505,218
Ohio 15.34 2.98 10.62 23.14 213,678
Oklahoma 18.66 4.58 9.67 25.20 8,929
South 16.62 3.68 10.80 26.73 595,611
Texas 21.57 2.68 17.26 27.15 42,542

U.S.A 17.57 2.95 14.24 22.64 9,250,052

Source: Data obtained from USDA
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Figure 1: Terminal Date CRC Indemnity Payoff
FG = Fixed Guarantee, R = Revenue, I = Indemnity
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 Figure 2: CRC Premium as a Function of Yield and Futures Price 

Y(t) = yield at t, and F(t, T) = futures price at t for maturity at T
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Figure 3: CRC Premium as a Function of Yield and Futures Price

Harvest price = p , Terminal Futures price = F(T,T)h
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Figure 4: CRC Premium as a Function of Yield Correlation

Harvest price = p , Terminal Futures price = F(T,T).h
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1. A detailed description and comparison of these programs can be found in the recent General Accounting Office report 

(GAO, (1998)).

2. According to the GAO (1998) study the CRC’s costs to the government will likely be significantly more than other plans,
because CRC has both higher reimbursements rates for administrative expenses, and it exposes the government to higher
underwriting losses, specially when widespread crop losses are coupled with rising prices.

3. Currently the program covers corn, cotton, sorghum, soybeans, and wheat in 18 states. Plans for extension to other crops
and geographic areas have been approved by FCIC. The GAO study indicates that CRC was 99.95%of the total acreage
covered by the three programs in 1997. CRC also had a 36% loss ratio (claims payments / total premiums), which was the
highest among the three plans.

4. APH is the farm's average historical yield, which is often taken from production records that have been maintained for
various farm support programs. County level yield data may be substituted in cases where farm specific APH is unknown.

5. In practice farmers may be able to purchase CRC insurance before t. For simplicity we assume that they chooses to
postpone such decision until t. Rational behavior dictates an optimal use of this free delay option. Hence from the farmer's
perspective p  is determined at t.b

6. Note that the price limit, L, reduces the exposure of both the insurance company and the farmer to large price movement
at harvest time. Similarly, thirty day averaging of prices reduce exposure to daily price volatility.

7. Asian options are described in detail in Hull (1997) and Wilmott et. al. (1993).

8.  Y  is referred to as the Production to Count. A farm's output may be appraised or adjusted for quality.T

9. We note it is possible to obtain a solution by setting the cross-partial terms equal to zero. Such restrictions significantly

reduce the usefulness of the proposed framework. 

10.It is widely recognized that Monte Carlo simulation is the most efficient procedure to use in cases with multiple state

variables and a path dependent payoff function (Hull (1997) and Wilmott, et. al. (1993)). 

11. Modeling the futures price process by a geometric Brownian motion was proposed by Black (1976). Using the same
model, Marcus & Modest (1984) study the farmer's production decisions and Marcus & Modest (1986) evaluate price
support programs. Schwartz (1998) presents other models for the futures price process and describes their merits. For
convenience, we assume that F  is time invariant. Duffie (1989) discusses the merits of this assumption.F
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12. Antithetic variance reduction exploits the symmetry inherent in the N(0, 1) distribution. For each draw , in N(0, 1), both
it and it's mirror image -, are used in generating 2 distinct sample paths, one corresponding to , and the other corresponding
to -,. Thus, N simulations, effectively yields 2 x N data. Additionally, because each pair (,, -,) are perfectly negatively
correlated, the variance of the simulated terminal date indemnity may be reduced. For detail see (Boyle 1977 and Bratley,
et. al. 1987).

13.Cholesky decomposition is used to create correlated variables using independent variates (see Abramowitz & Stegun
(1972) and Tong (1990). Let x  and x  be independent standard normal variables. Define1  2

Then y  and y  have a bivariate normal distribution with correlation D and y  - N (0 , 1), i = 1, 2. Let1  2          i

 i = 1, 2, be two Brownian motions with correlation Ddt = E(dW  , dW ). Using Cholesky decomposition we can write the1  2

two processes in term of uncorrelated Brownian motions. Let

µ = [µ , µ ], dZ = [dZ , dZ ], and 3 be a 2 x 2 matrix with 3  = F  and 3  = DFF , i, j = 1, 2. Using the lower triangular1  2    1  2           ii  i   ij  i j
2

matrix K, where KK' = 3, S is transformed to

where dS/S is distributed N(µ, 3).

14. Because futures contracts are settled daily (marked to market), the value of any contract and its expected dollar returns
are zero, see Black (1976) (page 173).

15.The value of Y* is the actual average of yields for all U.S. farms in 1997, as reported by USDA. We obtain the estimate

of F  = 0.04 from Tirupattur, et. al. (1996) (page 11). Y

16. Figure (2) indicates that for values of F(t,T) < 2.0, the two dimensional plot of premium (V) versus yield (Y) is the
familiar “hockey stick” shape of a put option. Similarly, for a fixed level of yield, the plot of premium versus futures price
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(F(t,T)) is a Collar with its floor and ceiling reversing as yield increases. The values in Table (1) were calculated  at the kink
in Figure (2).

17. We thank Dr. Joseph Glauber of the USDA for providing us with these data. The premiums collected in 1997 were
approximately$134 million.

18. We thank the referee for pointing out this area of potential research.

19. Our model does not directly address moral hazard problems. Clearly, the indemnity payment to the farmer is maximized
when output is zero. However, to receive the maximum payment, the farmer must pay the insurance premium, bear the costs
associated with planting the crop, and forego the revenues from the sale of his output. These costs are likely to exceed the
indemnity payment. Also, our model shows that in a dynamic world, the farmer has incentives to maintain her yield close
to the farm's historical average, because such effort would reduce the volatility of yield and lead to a reduction in CRC
premiums.


